extension | φ:Q→Out N | d | ρ | Label | ID |
(C3×Q8)⋊1C23 = C2×S3×SD16 | φ: C23/C2 → C22 ⊆ Out C3×Q8 | 48 | | (C3xQ8):1C2^3 | 192,1317 |
(C3×Q8)⋊2C23 = C2×Q8⋊3D6 | φ: C23/C2 → C22 ⊆ Out C3×Q8 | 48 | | (C3xQ8):2C2^3 | 192,1318 |
(C3×Q8)⋊3C23 = S3×C8⋊C22 | φ: C23/C2 → C22 ⊆ Out C3×Q8 | 24 | 8+ | (C3xQ8):3C2^3 | 192,1331 |
(C3×Q8)⋊4C23 = C22×Q8⋊2S3 | φ: C23/C22 → C2 ⊆ Out C3×Q8 | 96 | | (C3xQ8):4C2^3 | 192,1366 |
(C3×Q8)⋊5C23 = C2×D4⋊D6 | φ: C23/C22 → C2 ⊆ Out C3×Q8 | 48 | | (C3xQ8):5C2^3 | 192,1379 |
(C3×Q8)⋊6C23 = C22×S3×Q8 | φ: C23/C22 → C2 ⊆ Out C3×Q8 | 96 | | (C3xQ8):6C2^3 | 192,1517 |
(C3×Q8)⋊7C23 = C22×Q8⋊3S3 | φ: C23/C22 → C2 ⊆ Out C3×Q8 | 96 | | (C3xQ8):7C2^3 | 192,1518 |
(C3×Q8)⋊8C23 = C2×S3×C4○D4 | φ: C23/C22 → C2 ⊆ Out C3×Q8 | 48 | | (C3xQ8):8C2^3 | 192,1520 |
(C3×Q8)⋊9C23 = C2×D4○D12 | φ: C23/C22 → C2 ⊆ Out C3×Q8 | 48 | | (C3xQ8):9C2^3 | 192,1521 |
(C3×Q8)⋊10C23 = S3×2+ 1+4 | φ: C23/C22 → C2 ⊆ Out C3×Q8 | 24 | 8+ | (C3xQ8):10C2^3 | 192,1524 |
(C3×Q8)⋊11C23 = C2×C6×SD16 | φ: C23/C22 → C2 ⊆ Out C3×Q8 | 96 | | (C3xQ8):11C2^3 | 192,1459 |
(C3×Q8)⋊12C23 = C6×C8⋊C22 | φ: C23/C22 → C2 ⊆ Out C3×Q8 | 48 | | (C3xQ8):12C2^3 | 192,1462 |
(C3×Q8)⋊13C23 = C2×C6×C4○D4 | φ: trivial image | 96 | | (C3xQ8):13C2^3 | 192,1533 |
(C3×Q8)⋊14C23 = C6×2+ 1+4 | φ: trivial image | 48 | | (C3xQ8):14C2^3 | 192,1534 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C3×Q8).1C23 = C2×D4.D6 | φ: C23/C2 → C22 ⊆ Out C3×Q8 | 96 | | (C3xQ8).1C2^3 | 192,1319 |
(C3×Q8).2C23 = C2×Q8.7D6 | φ: C23/C2 → C22 ⊆ Out C3×Q8 | 96 | | (C3xQ8).2C2^3 | 192,1320 |
(C3×Q8).3C23 = SD16⋊13D6 | φ: C23/C2 → C22 ⊆ Out C3×Q8 | 48 | 4 | (C3xQ8).3C2^3 | 192,1321 |
(C3×Q8).4C23 = C2×S3×Q16 | φ: C23/C2 → C22 ⊆ Out C3×Q8 | 96 | | (C3xQ8).4C2^3 | 192,1322 |
(C3×Q8).5C23 = C2×Q16⋊S3 | φ: C23/C2 → C22 ⊆ Out C3×Q8 | 96 | | (C3xQ8).5C2^3 | 192,1323 |
(C3×Q8).6C23 = C2×D24⋊C2 | φ: C23/C2 → C22 ⊆ Out C3×Q8 | 96 | | (C3xQ8).6C2^3 | 192,1324 |
(C3×Q8).7C23 = D12.30D4 | φ: C23/C2 → C22 ⊆ Out C3×Q8 | 96 | 4 | (C3xQ8).7C2^3 | 192,1325 |
(C3×Q8).8C23 = S3×C4○D8 | φ: C23/C2 → C22 ⊆ Out C3×Q8 | 48 | 4 | (C3xQ8).8C2^3 | 192,1326 |
(C3×Q8).9C23 = SD16⋊D6 | φ: C23/C2 → C22 ⊆ Out C3×Q8 | 48 | 4 | (C3xQ8).9C2^3 | 192,1327 |
(C3×Q8).10C23 = D8⋊15D6 | φ: C23/C2 → C22 ⊆ Out C3×Q8 | 48 | 4+ | (C3xQ8).10C2^3 | 192,1328 |
(C3×Q8).11C23 = D8⋊11D6 | φ: C23/C2 → C22 ⊆ Out C3×Q8 | 48 | 4 | (C3xQ8).11C2^3 | 192,1329 |
(C3×Q8).12C23 = D8.10D6 | φ: C23/C2 → C22 ⊆ Out C3×Q8 | 96 | 4- | (C3xQ8).12C2^3 | 192,1330 |
(C3×Q8).13C23 = D8⋊4D6 | φ: C23/C2 → C22 ⊆ Out C3×Q8 | 48 | 8- | (C3xQ8).13C2^3 | 192,1332 |
(C3×Q8).14C23 = D8⋊5D6 | φ: C23/C2 → C22 ⊆ Out C3×Q8 | 48 | 8+ | (C3xQ8).14C2^3 | 192,1333 |
(C3×Q8).15C23 = D8⋊6D6 | φ: C23/C2 → C22 ⊆ Out C3×Q8 | 48 | 8- | (C3xQ8).15C2^3 | 192,1334 |
(C3×Q8).16C23 = S3×C8.C22 | φ: C23/C2 → C22 ⊆ Out C3×Q8 | 48 | 8- | (C3xQ8).16C2^3 | 192,1335 |
(C3×Q8).17C23 = D24⋊C22 | φ: C23/C2 → C22 ⊆ Out C3×Q8 | 48 | 8+ | (C3xQ8).17C2^3 | 192,1336 |
(C3×Q8).18C23 = C24.C23 | φ: C23/C2 → C22 ⊆ Out C3×Q8 | 48 | 8+ | (C3xQ8).18C2^3 | 192,1337 |
(C3×Q8).19C23 = SD16.D6 | φ: C23/C2 → C22 ⊆ Out C3×Q8 | 96 | 8- | (C3xQ8).19C2^3 | 192,1338 |
(C3×Q8).20C23 = C2×Q8.11D6 | φ: C23/C22 → C2 ⊆ Out C3×Q8 | 96 | | (C3xQ8).20C2^3 | 192,1367 |
(C3×Q8).21C23 = C22×C3⋊Q16 | φ: C23/C22 → C2 ⊆ Out C3×Q8 | 192 | | (C3xQ8).21C2^3 | 192,1368 |
(C3×Q8).22C23 = C2×Q8.13D6 | φ: C23/C22 → C2 ⊆ Out C3×Q8 | 96 | | (C3xQ8).22C2^3 | 192,1380 |
(C3×Q8).23C23 = C12.C24 | φ: C23/C22 → C2 ⊆ Out C3×Q8 | 48 | 4 | (C3xQ8).23C2^3 | 192,1381 |
(C3×Q8).24C23 = C2×Q8.14D6 | φ: C23/C22 → C2 ⊆ Out C3×Q8 | 96 | | (C3xQ8).24C2^3 | 192,1382 |
(C3×Q8).25C23 = D12.32C23 | φ: C23/C22 → C2 ⊆ Out C3×Q8 | 48 | 8+ | (C3xQ8).25C2^3 | 192,1394 |
(C3×Q8).26C23 = D12.33C23 | φ: C23/C22 → C2 ⊆ Out C3×Q8 | 48 | 8- | (C3xQ8).26C2^3 | 192,1395 |
(C3×Q8).27C23 = D12.34C23 | φ: C23/C22 → C2 ⊆ Out C3×Q8 | 48 | 8+ | (C3xQ8).27C2^3 | 192,1396 |
(C3×Q8).28C23 = D12.35C23 | φ: C23/C22 → C2 ⊆ Out C3×Q8 | 96 | 8- | (C3xQ8).28C2^3 | 192,1397 |
(C3×Q8).29C23 = C2×Q8.15D6 | φ: C23/C22 → C2 ⊆ Out C3×Q8 | 96 | | (C3xQ8).29C2^3 | 192,1519 |
(C3×Q8).30C23 = C2×Q8○D12 | φ: C23/C22 → C2 ⊆ Out C3×Q8 | 96 | | (C3xQ8).30C2^3 | 192,1522 |
(C3×Q8).31C23 = C6.C25 | φ: C23/C22 → C2 ⊆ Out C3×Q8 | 48 | 4 | (C3xQ8).31C2^3 | 192,1523 |
(C3×Q8).32C23 = D6.C24 | φ: C23/C22 → C2 ⊆ Out C3×Q8 | 48 | 8- | (C3xQ8).32C2^3 | 192,1525 |
(C3×Q8).33C23 = S3×2- 1+4 | φ: C23/C22 → C2 ⊆ Out C3×Q8 | 48 | 8- | (C3xQ8).33C2^3 | 192,1526 |
(C3×Q8).34C23 = D12.39C23 | φ: C23/C22 → C2 ⊆ Out C3×Q8 | 48 | 8+ | (C3xQ8).34C2^3 | 192,1527 |
(C3×Q8).35C23 = C2×C6×Q16 | φ: C23/C22 → C2 ⊆ Out C3×Q8 | 192 | | (C3xQ8).35C2^3 | 192,1460 |
(C3×Q8).36C23 = C6×C4○D8 | φ: C23/C22 → C2 ⊆ Out C3×Q8 | 96 | | (C3xQ8).36C2^3 | 192,1461 |
(C3×Q8).37C23 = C6×C8.C22 | φ: C23/C22 → C2 ⊆ Out C3×Q8 | 96 | | (C3xQ8).37C2^3 | 192,1463 |
(C3×Q8).38C23 = C3×D8⋊C22 | φ: C23/C22 → C2 ⊆ Out C3×Q8 | 48 | 4 | (C3xQ8).38C2^3 | 192,1464 |
(C3×Q8).39C23 = C3×D4○D8 | φ: C23/C22 → C2 ⊆ Out C3×Q8 | 48 | 4 | (C3xQ8).39C2^3 | 192,1465 |
(C3×Q8).40C23 = C3×D4○SD16 | φ: C23/C22 → C2 ⊆ Out C3×Q8 | 48 | 4 | (C3xQ8).40C2^3 | 192,1466 |
(C3×Q8).41C23 = C3×Q8○D8 | φ: C23/C22 → C2 ⊆ Out C3×Q8 | 96 | 4 | (C3xQ8).41C2^3 | 192,1467 |
(C3×Q8).42C23 = C6×2- 1+4 | φ: trivial image | 96 | | (C3xQ8).42C2^3 | 192,1535 |
(C3×Q8).43C23 = C3×C2.C25 | φ: trivial image | 48 | 4 | (C3xQ8).43C2^3 | 192,1536 |